РАСЧЁТНОЕ ЗАДАНИЕ

по дисциплине «Техника высоких напряжений» для студентов IV курса ИЭЭ

«РАСЧЁТ МОЛНИЕЗАЩИТЫ ОТКРЫТОГО РАСПРЕДЕЛИТЕЛЬНОГО УСТРОЙСТВА (ОРУ) ПОДСТАНЦИИ»

ЗАДАНИЕ НА РАСЧЁТ

- 1. Определить параметры изолирующих подвесок для промежуточных опор воздушных линий электропередачи (ВЛ) и для порталов открытого распределительного устройства (ОРУ). Расчёты выполнить для обоих указанных в исходных данных классов напряжения. Определить импульсные разрядные напряжения для каждого расчётного случая.
- 2. Для каждого класса напряжения выбрать опору, фазный провод и молниезащитный трос ВЛ. Рассчитать стрелы провеса провода в пролёте. Определить длину опасной зоны и защищенного подхода и рассчитать ожидаемое число повреждений изоляции оборудования на подстанции (ОРУ-1 и ОРУ-2, рис. 1) от ударов молнии в ВЛ в пределах защищенного подхода.
- 3. Определить необходимое число и высоту стержневых молниеотводов для защиты электрооборудования от прямых ударов молнии и расставить молниеотводы на территории ОРУ, обеспечив требуемую надёжность. Рассчитать ожидаемое число повреждений в год изоляции электрооборудования ОРУ от прямых ударов молнии.
- 4. Определить параметры контура заземления подстанции (длину и число вертикальных электродов, шаг сетки), обеспечивающие допустимую величину его стационарного сопротивления заземления. Построить зависимость импульсного сопротивления контура заземления подстанции от тока молнии. Рассчитать ожидаемое число повреждений в год изоляции электрооборудования ОРУ в результате обратных перекрытий на территории подстанции.
- 5. Определить показатель грозоупорности подстанции и в случае необходимости предложить методы его повышения.

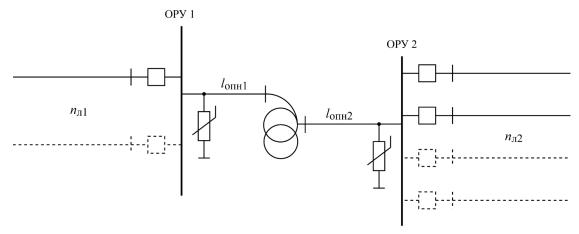


Рис. 1. Упрощенная схема подстанции

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

Исходные данные представлены в таблице 1 и 2.

K пункту 1.

Для расчётов используются материалы \$17.1, 17.2, 31.1 [1] или \$23.2, 6.4 [2] . Необходимо также ознакомиться со всеми разделами главы 6 [2].

Для ВЛ большего класса напряжения применять гирлянды стеклянных подвесных изоляторов, для ВЛ меньшего класса напряжения – длинностержневые полимерные изоляторы.

На опорах использовать поддерживающие изолирующие подвески, состоящие из одной гирлянды или одного стержневого изолятора.

При выборе типа стеклянных изоляторов считать, что в местностях со степенями загрязнения атмосферы I и II в гирляндах используются изоляторы нормального исполнения, а в местностях со степенями загрязнения III и IV – изоляторы специального исполнения.

Конфигурация изолятора выбирается в соответствии с п. $11.15 [3]^1$.

Изоляторы выбираются из таблиц 3 и 5 в соответствии с требованиями п. 7-9, 11 [3]. Пояснения к таблице 3 даны в таблице 4. Допускается также выбор изоляторов из других источников (например, каталог продукции НПО «Изолятор»). В работе в любом случае обязательно указывать источник информации.

Удельная нормированная длина пути утечки выбирается в соответствии с таблицей 19 [3].

Наибольшее рабочее напряжение сети определяется по таблице 4.1 [4] в соответствии с её номинальным напряжением.

Высота расположения подстанции и воздушных линий над уровнем моря – до 1 км, если преподавателем не указано иное требование.

Для расчёта импульсных разрядных напряжений $U_{50\%}$ гирлянд тарельчатых изоляторов воспользоваться следующей формулой:

$$U_{50\%} = E_{\rm cp.p} H_{\rm из1} n_{\scriptscriptstyle \Gamma}$$
 , кВ

где $E_{\rm cp.p}$ — средняя разрядная напряженность, которую в расчётах принимать равной $E_{\rm cp.p}$ = 5 кB/см, $H_{\rm из1}$ — строительная высота одного изолятора, см; $n_{\rm r}$ — число изоляторов в гирлянде.

Для полимерных изоляторов значения $U_{50\%}$ определяются по таблице 5.

Выбор опор и проводов проводится по справочнику [5].

Рекомендуется выбирать промежуточные одноцепные свободностоящие опоры. Предлагается считать, что изоляционные подвески, поддерживающие крайние фазные провода, крепятся на концах траверс опор, если в [5] не указано иное.

Класс по ветру выбирать в соответствии с указаниями преподавателя.

-2-

 $^{^1}$ Наличие в районе размещения подстанции засоленных почв, промышленных загрязнений или ее близость к морю — по указанию преподавателя.

К пункту 2.

Расчёт критической крутизны фронта набегающей волны выполнить для случая, когда ОПН установлен до защищаемого оборудования (силового трансформатора или автотрансформатора) по ходу движения волны. Для расчёта максимального значения напряжения на трансформаторе $U_{\rm Tp}$ воспользоваться схемой замещения рис. 2.

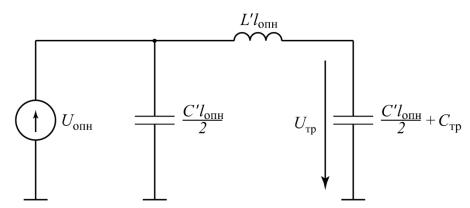


Рис. 2. Схема замещения для расчёта напряжения на трансформаторе $(U_{\text{опн}}$ – напряжение на ОПН, L' и C' – погонные индуктивность и ёмкость ошиновки; $l_{\text{опн}}$ – длина ошиновки между ОПН и автотрансформатором; $C_{\text{тр}}$ – входная ёмкость трансформатора)

При расчёте погонных параметров L' и C' ошиновки между ОПН и трансформатором принять, что скорость распространения волны по ошиновке v=300 м/мкс, если иное не указано преподавателем.

Для схемы замещения (рис. 2) расчётная зависимость отношения максимального напряжения на изоляции трансформатора к остающемуся напряжению ОПН $U_{\text{ост}}$ приведена на рисунке 3, где пунктирной линией показана кривая максимальных значений, а сплошной – огибающая максимальных значений, которую и следует использовать в расчётах.

ОПН следует выбирать по наибольшему длительно допустимому рабочему напряжению аппарата $U_{\rm Hp}$. Оно должно быть как минимум на 2% выше наибольшего рабочего фазного напряжения сети $U_{\rm Hpc, \varphi}$. Характеристики ОПН 110–750 кВ приведены в таблице 6. Остающееся напряжение ОПН $U_{\rm oct}$ выбирается по току координации, который следует принять равным 5 кА для ПС 110–220 кВ и 10 кА – для ПС 330–750 кВ.

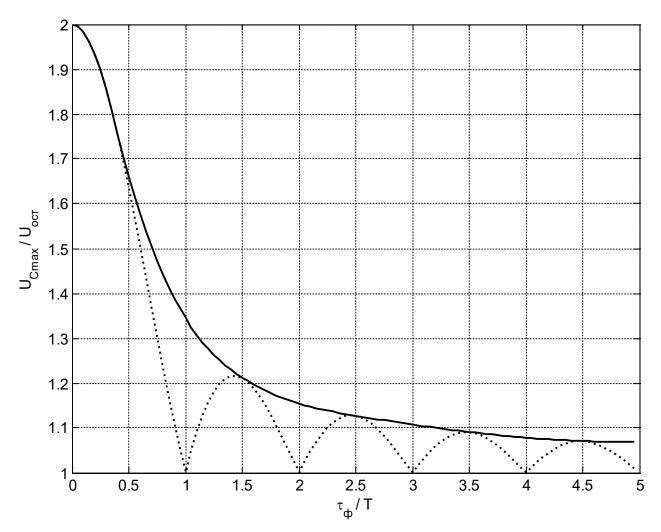


Рис. 3. Зависимость максимального напряжения на емкости в схеме рис. 2 от отношения τ_{ϕ}/T при импульсе с косоугольном фронтом

Выбранный ОПН нужно проверить по условию обеспечения термической устойчивости аппарата при однофазных коротких замыканиях на шинах. Для этого $U_{\rm Hp}$ должно удовлетворять следующему условию:

$$U_{\rm Hp} \ge \frac{1}{K_t} \sqrt{\left(U_{\rm Hpc, \phi} + 0.5 \Delta U\right)^2 + \frac{3}{4} \Delta U^2}$$

где

 $K_t = \frac{U_{\text{доп}}(t)}{U_{\text{нр}}}$ – коэффициент, определяемый по зависимости «напряжение—время» (рис. 4) для случая с предварительным нагружением нормируемым импульсом энергии;

 $U_{\text{доп}}(t)$ — допустимое напряжение ОПН в течение времени t (для проверки ОПН по условиям работы при квазистационарных перенапряжениях, вызванных однофазными короткими замыканиями на землю, время t принимают равным времени срабатывания последней ступени релейной защиты t_{p3} (в расчётах принять $t_{p3} = 1$ с);

 ΔU — приращение напряжения на здоровых фазах, определяемое по сопротивлениям системы по прямой и нулевой последовательностям (соответственно x_1 и x_0):

$$\Delta U = U_{\mathrm{HPC}, \phi} rac{k-1}{k+2}$$
, где $k = rac{x_0}{x_1}$.

Коэффициент k задаётся в качестве исходных данных в таблице 1.

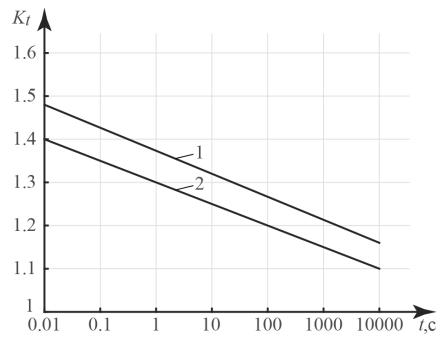


Рис. 4. Характеристики «напряжение-время»

(1 – без предварительного нагружения; 2 – с предварительным нагружением)

После расчёта критических крутизн $U_{\text{кр}}^{'}$ волн напряжения, набегающих по линиям на ОРУ-1 и ОРУ-2, их необходимо скорректировать в соответствии с числом ВЛ $n_{\text{вл}}$, подключённых к ОРУ:

$$U_{\mathrm{kp}}'(n) = K_n U_{\mathrm{kp}}'$$

Значения коэффициента K_n принять в соответствии с таблицей 7.

Для полученных значений критических крутизн волн напряжения $U'_{\rm kp}(n)$ рассчитать длины опасных зон, а затем с учётом длины пролёта определить длины защищенных тросами подходов $l_{\rm 3n_1}$ и $l_{\rm 3n_2}$ ([7], стр. 205, [8]).

Значение импульсного сопротивления заземления опоры ВЛ $R_{и_{on}}$ (необходимо при расчёте вероятности перекрытия гирлянды изоляторов в случае удара молнии в вершину опоры) *указывается преподавателем*. Если преподавателем не указано значение $R_{u_{on}}$, то принять его равным 15 Ом.

Средняя высота $h_{\text{пр}_{\text{CD}}}$ провода в пролёте ВЛ рассчитывается как

$$h_{\mathrm{np}_{\mathrm{cp}}} = h_{\mathrm{np}_{\mathrm{on}}} - \frac{2}{3} f_{\mathrm{np}}$$
 ,

где $h_{\rm пp}{}_{\rm on}$ — высота подвеса фазного провода на опоре; $f_{\rm np}$ — стрела провеса фазного провода.

Стрела провеса фазного провода $f_{\rm np}$ определяется как

$$f_{\rm np} = 4 \cdot 10^{-4} \cdot \frac{l_{\rm npon}^2}{\sqrt{S_{\rm cr}}},$$

где $l_{\text{прол}}$ — длина пролёта (подставляется в метрах); $S_{\text{ст}}$ — площадь сечения стального сердечника сталеалюминиевого провода марки АС (подставляется в мм²).

Вероятность пробоя воздушного промежутка «молниезащитный трос – фазный провод» принимается равной 0, если преподавателем не указано иное.

Стрелу провеса молниезащитного троса принять равной

$$f_{\rm Tp} = m \cdot f_{\rm np},$$

где $f_{\rm np}$ — стрела провеса фазного провода, а значение коэффициента m указывается преподавателем. Если преподавателем не указано значение m, то принять его равным 0.8.

К пункту 3.

При расчёте зон защиты молниеотводов использовать рекомендации [9] или [10] (*ука-зывается преподавателем*).

Высоту молниеотвода (вершины молниеприёмника) принять равной

$$h = h_{x} + (10 \div 18) \text{ M},$$

где $h_{\rm X}$ – высота порталов ОРУ большего класса напряжения.

Шаг изменения высоты молниеотвода при расчётах брать равным 2 метра, если иное не указано преподавателем.

Все расчётные итерации требуется оформлять в виде таблиц.

Графических решений задачи представить минимум 2: на первой и последней итерациях расчёта зон защиты молниеотводов. Если первая итерация сразу является успешной (подстанция защищена), то необходимо показать, что при уменьшении высоты молниеотводов территорию подстанции невозможно защитить от прямых ударов молнии. Уменьшение высоты молниеотвода выполнять с шагом 1 метр до первого расчёта, когда территория подстанции не будет защищена.

На графическом решении обозначить места установки молниеотводов с указанием рядом их номеров и смещений в метрах относительно верхнего левого угла территории подстанции. Например, метка «2 (4,5; 6)» означает, что это молниеотвод с номером «2», отстоящий от верхнего левого угла территории подстанции на 4,5 метра вправо и на 6 метров вниз.

На графическом решении необходимо выделить незащищённые участки, если таковые имеются.

К пункту 4.

Для расчёта воспользоваться рекомендациями §21.3 учебника [1]. Необходимо подобрать такие параметры, чтобы стационарное сопротивление контура заземления не превышало 0,5 Ом. При невозможности выполнения этого условия предложить (строго (!) в пункте 5 задания) мероприятия, направленные на снижение стационарного сопротивления до требуемого уровня.

Шаги горизонтальных полос по длине и ширине сетки следует выбирать минимальными из ряда значений 3 м, 4 м и 5 м таким образом, чтобы количество полос было целым числом, если иное не указано преподавателем.

Длину вертикальных стержней контура заземления подстанции принимать в диапазоне $3\div10$ м, если иное не указано преподавателем.

Расчёт стационарного сопротивления заземления ОРУ выполнить для двух случаев (если преподавателем не указано иное):

- 1) вертикальные стержни установлены только в узлах сетки, расположенных на внешних горизонтальных полосах (узлы расположены по периметру территории подстанции);
- 2) вертикальные стержни установлены во всех узлах сетки.

Для расчёта импульсного сопротивления контура заземления обосновать выбор одного из рассчитанных значений стационарного сопротивления заземления.

Расчёт импульсного сопротивления контура заземления выполнить для диапазона значений тока молнии $I_{\rm M}$ от 1 до 150 кА. Для расчёта импульсного сопротивления воспользоваться рекомендациями § 21.3 учебника [1].

Значение удельной индуктивности портала на ОРУ принять равным 0,9 мкГн/м, если преподавателем не указано иное.

К пункту 5.

Среднее число лет безаварийной работы подстанции определяется по формуле:

$$M = \frac{1}{\beta_1 + \beta_2 + \beta_{3_1} + \beta_{3_2}}$$

где

 β_1 — среднее ожидаемое число перекрытий изоляции подстанции из-за прорывов молнии в зону защиты молниеотвода (из п. 1.6);

 β_2 — среднее ожидаемое число перекрытий изоляции подстанции при ударах молнии в молниеотводы (из п. 1.6);

 β_{3_1} и β_{3_2} — средние ожидаемые числа перекрытий изоляции подстанции вследствие набегания по линиям опасных волн напряжения на ОРУ-1 и ОРУ-2 (рис. 1).

В предложении методов повышения показателя грозоупорности подстанции (если необходимо) требуется привести не общие слова и цитаты из литературы, а действенные методы повышения грозоупорности подстанции, основанные на результатах выполненного расчётного задания, для чего необходимо проанализировать полученные результаты и выявить наиболее влияющие на показатель грозоупорности величины.

Литература

- 1. Базуткин В.В., Ларионов В.П., Пинталь Ю.С. Техника высоких напряжений. Изоляция и перенапряжения в электрических системах / Под ред. В.П. Ларионова. 3-е изд. М.: Энергоатомиздат, 1986.
- 2. Ларионов В.П., Базуткин В.В., Сергеев Ю.Г. Техника высоких напряжений (Изоляция и перенапряжения в электрических установках) / Под ред. В.П. Ларионова. М.: Энергоиздат, 1982.
- 3. СТО 56947007-29.240.059-2010. Инструкция по выбору изоляции электроустановок // OAO «ФСК ЕЭС», 2010.
- 4. ГОСТ Р 55195-2012. Электрооборудование и электроустановки переменного тока на напряжение от 1 до 750 кВ. Требования к электрической прочности изоляции // М.: Стандартинформ, 2014.
- 5. Справочник по электрическим установкам высокого напряжения / под ред. И.А. Баумштейна, С.А. Бажанова. 3-е изд., перераб. и доп. М.: Энергоатомиздат, 1989.
- 6. Правила устройства электроустановок. Седьмое издание. М.: Министерство энергетики Российской Федерации, 2002.
- 7. Лабораторные работы по технике высоких напряжений. Аронов М.А. и др. М.: Энергоатомиздат, 1982.
- 8. Гилязов М.З., Ларин В.С., Матвеев Д.А. Компьютерная лабораторная работа «Защита подстанций от набегающих волн». Методическое пособие по курсу «Изоляция и перенапряжения» для студентов, обучающихся по направлению «Электроэнергетика». М.: Издательский дом МЭИ, 2010.
- 9. Инструкция по устройству молниезащиты зданий и сооружений. РД 34.21.122-87.-M.: Минэнерго СССР, 1987.
- 10. Инструкция по устройству молниезащиты зданий, сооружений и промышленных коммуникаций. СО-153-34.21.122—2003. М.: Издательство МЭИ, 2004.

Таблица 1 - Исходные данные

№	U_{Hom}	, кВ	C3A	F_{mex}	, кН	Район по	Iпро	л, М	<i>l</i> л,	КМ	ρ_{γ}	D_{Γ} ,	a,	<i>b</i> ,	lопн	ı, M	n	ВЛ		k
	1	2		1	2	гололеду	1	2	1	2	Ом·м	ч/год	M	M	1	2	1	2	1	2
1	220	110	III	80	50	III	200	225	150	100	65	55	50	80	20	30	1	2	2,75	3,2
2	330	110	II	110	60	III	275	210	200	110	90	40	70	90	35	25	1	3	2,8	3,0
3	330	150	III	130	80	II	325	250	220	130	110	50	80	60	30	30	1	4	2,5	3,0
4	330	220	I	90	80	I	365	310	240	180	70	40	90	60	20	40	2	3	2,6	2,8
5	500	110	II	180	60	I	400	305	360	90	60	40	70	80	15	45	1	4	2,5	3,5
6	500	220	I	200	100	III	330	280	320	210	120	40	90	70	40	20	1	3	2,75	2,9
7	750	220	II	220	90	II	430	345	400	150	95	35	70	100	35	25	2	3	2,8	3,0
8	220	110	II	90	60	III	295	250	250	100	115	30	50	60	30	35	1	4	3,0	2,9
9	330	110	I	130	80	IV	240	190	260	90	95	50	70	50	20	45	2	4	2,5	2,8
10	330	150	II	90	50	II	300	335	280	120	105	60	50	80	15	40	2	3	2,4	2,8
11	330	220	III	110	90	I	315	315	300	160	50	30	50	90	40	35	1	3	2,6	3,2
12	500	110	I	200	80	IV	290	225	390	80	135	55	100	60	35	20	1	4	2,9	3,3
13	500	220	II	150	80	I	365	340	370	190	125	35	70	100	30	20	2	4	2,8	2,7
14	750	220	I	250	100	II	450	300	320	220	145	50	120	70	20	30	2	4	2,7	2,6
15	220	110	III	100	80	III	280	190	200	110	110	25	70	50	15	35	1	4	2,9	3,2
16	330	110	I	90	50	IV	220	150	210	90	100	20	50	80	40	40	1	3	2,4	2,9
17	330	150	III	110	60	II	310	255	230	110	80	30	50	100	20	25	2	3	2,5	2,75
18	330	220	II	130	100	IV	230	220	250	170	70	45	80	70	35	25	1	3	2,6	3,0
19	500	220	IV	180	105	II	365	310	340	145	100	50	80	60	45	20	2	4	2,9	3,0
20	500	110	II	150	50	I	355	320	300	100	75	45	60	120	25	35	1	2	2,8	2,8
21	500	220	I	180	90	IV	280	240	370	230	125	30	80	40	35	40	2	4	2,8	3,6
22	750	220	I	200	80	III	380	280	330	240	145	55	120	70	40	15	1	4	2,5	3,4
23	330	220	III	90	80	I	335	310	240	180	50	45	60	100	20	30	1	4	2,7	3,0
24	500	220	I	200	100	IV	300	270	320	210	95	50	60	80	35	20	2	4	2,75	2,8
25	330	110	II	130	80	III	285	255	260	90	55	40	50	70	40	45	1	4	2,6	3,1

N₂	$U_{ ext{ t HOM}}$, кВ	C3A	F_{mex}	, кН	Район по	$l_{\rm npo}$	л, М	$l_{\scriptscriptstyle m J},$	КМ	ρ,	D_{Γ} ,	a,	<i>b</i> ,	$l_{\text{опн}}$, M	nı	ВЛ	I	k
	1	2		1	2	гололеду	1	2	1	2	Ом·м	ч/год	M	M	1	2	1	2	1	2
26	500	110	III	200	80	I	370	340	390	80	60	35	110	70	45	50	1	3	2,8	2,9
27	750	220	III	250	100	III	420	280	320	220	150	45	70	120	30	60	2	4	2,5	2,8
28	330	110	II	90	50	II	290	235	210	90	130	50	50	60	15	40	1	3	2,7	2,75
29	500	220	III	180	90	I	395	325	370	230	80	55	70	80	20	45	1	2	2,6	2,7
30	750	220	II	200	80	III	410	310	330	240	50	40	120	90	30	35	2	3	2,6	2,5

№ – номер индивидуального варианта задания,

 $U_{\text{ном}}$ – номинальное напряжение линии,

СЗА – степень загрязнения атмосферы,

 $F_{\text{мех}}$ – механическая нагрузка на изоляторы (изолирующую подвеску),

 $l_{\text{прол}}$ – длина пролёта линии,

 $l_{\text{л}}$ – длина линии,

р – расчетное удельное сопротивление грунта в районе расположения подстанции,

 D_{Γ} – число грозовых часов в году в районе прохождения линии и расположения подстанции,

a и b – габариты подстанции,

 $l_{\text{опн}}$ – расстояния от защищаемого объекта до ОПН в ОРУ,

 $n_{\rm BJ}$ — число воздушных линий электропередачи, подходящих к OPУ,

k – коэффициенты, равные максимально возможному отношению внутренних индуктивных сопротивлений сети по нулевой и прямой последовательности (x0/x1) при однофазном КЗ на $\frac{1}{2}$ на \frac

Таблица 2 - Исходные данные, зависящие от класса напряжения

$U_{ном},\kappa\mathbf{B}$	Z c, Ом	<i>h</i> _x , м	$C_{ au p}$, п Φ	$U_{\rm исп.пги}, \kappa { m B}$
110	420	12	1600	480
150	400	14	1800	550
220	370	17	2000	750
330	330	20	3000	950
500	300	24	4200	1300
750	280	30	4600	1800

 $U_{\text{ном}}$ – класс напряжения,

 Z_{c} – волновое сопротивление воздушной линии и ошиновки ОРУ,

 $l_{\rm np}$ – длина пролёта воздушных линий,

 $h_{\rm X}$ – высота портала ОРУ,

 $C_{\text{тр}}$ – входная емкость защищаемого оборудования (силового автотрансформатора),

 $U_{\text{исп.пги}}$ — нормированные значения испытательного напряжения полного грозового импульса для силовых трансформаторов и автотрансформаторов.

Таблица 3 - Характеристики стеклянных подвесных линейных изоляторов²

Тип изолятора	<i>F</i> , кН	<i>D</i> , мм	Н, мм	$L_{ m yr},$ mm
ПС 70Е (127)		255	127	320
ПС 70Е (146)		255	146	320
ПС 70И]	255	146	407
ПСВ 70А	70	280	146	445
ПСД 70Е (127)	70	270	127	411
ПСД 70Е (146)		270	146	411
ПСС 70А (127)		310	127	310
ПСС 70А (170)		310	170	310
ПС 80А	80	255	140	320
ПС 120Б (127)		255	127	320
ПС 120Б (146)]	255	146	320
ПС 120Б (170)]	255	170	320
ПС 120В]	255	146	407
ПСВ 120Б (127)	120	280	127	445
ПСВ 120Б (146)]	280	146	445
U 120BP1		320	146	555
ПСС 120Б (127)		330	127	330
ПСС 120Б (146)		330	146	330
ПС 160Д (146)		280	146	385
ПС 160Д (170)		280	170	385
ПС160К	1.00	280	170	460
ПСВ 160А (146)	160	320	146	545
ПСВ 160А (170)]	320	170	545
ПСД 160А		350	146	440
ПС 190А (170)		280	170	428
ПС 190А (190)	190	280	190	428
ПСВ 190А]	340	196	617
ПС 210В (170)		280	170	380
ПС 210В (190)]	280	190	380
ПС 210Д]	280	170	482
ПСВ 210А (170)	210	330	170	555
ПСВ 210А (195)]	330	195	555
ПСК 210А]	410	155	410
ПСС 210Б		410	156	410

 $^{^2}$ Обозначения, принятые в табл. 3: F – механическая разрушающая сила при растяжении, кH, не менее; D – диаметр тарелки изолятора, мм; H — строительная высота изолятора, мм; $L_{\rm yr}$ — длина пути утечки изолятора, мм.

Тип изолятора	<i>F</i> , кН	<i>D</i> , мм	Н, мм	$L_{ m yr}$, мм
ПС 240А (170)		280	170	428
ПС 240А (190)	240	280	190	428
ПСВ 240А (170)	240	340	170	617
ПСВ 240А (195)		340	195	617
ПС 300Б		320	195	385
ПС 300В		320	195	390
ПС 300Г	300	320	195	485
ПСВ 300А	300	360	195	617
ПСК 300А		450	180	460
ПСК 300К		450	175	457

Таблица 4 – Аббревиатуры конфигурации изоляционной детали

Аббревиатура	Расшифровка				
ПС	подвесной стеклянный нормального исполнения				
Специальные исполнен	ия				
ПСВ (ВР)	подвесной стеклянный с увеличенным вылетом ребра				
ПСД	подвесной стеклянный двукрылый				
ПСС	подвесной стеклянный сферический				
ПСК	подвесной стеклянный конусный				

Таблица 5 – Характеристики полимерных линейных подвесных стержневых изоляторов³

Тип изолятора	$U_{\text{ном}}$, кВ	<i>F</i> , кН	<i>H</i> , мм	<i>Н</i> _{из} , мм	$L_{ m yr}$, мм	<i>U</i> 50%, кВ
ЛК-70/110-2			1203	1015	2700	630
ЛК-70/110-3			1203	1015	3140	630
ЛК-70/110-4		70	1333	1145	3545	700
ЛКК 70/110-III			1275	1078	3360	550
ЛКК 70/110-IV			1395	1192	3800	650
ЛК-120/110-2	110	120	1316	1085	2790	630
ЛК-120/110-3	110		1316	1085	3340	630
ЛК-120/110-4			1446	1215	3745	700
ЛК-120/110-4		120	1252	1021	3850	550
ЛКК 120/110-III			1345	1078	3360	550
ЛКК 120/110-IV			1460	1192	3800	650
ЛК-160/110-4		160	1273	1021	3850	550

³ Обозначения, принятые в табл. 5:

F — механическая разрушающая сила при растяжении, кH, не менее; H — строительная высота изолятора, мм; $H_{\rm H3}$ — длина изоляционной части изолятора, мм; $L_{\rm yr}$ — длина пути утечки изолятора, мм, не менее; $U_{50\%}$ — выдерживаемое напряжение грозовых импульсов, кB, не менее.

Таблица 5 — Характеристики полимерных линейных подвесных стержневых изоляторов 4 (продолжение)

Тип изолятора	U ном, кВ	<i>F</i> , кН	Н, мм	<i>Н</i> из, мм	$L_{ m yr}$, мм	<i>U</i> _{50%} , κΒ
ЛК-70/150-2			1525	1330	3480	885
ЛК-70/150-3			1525	1330	4080	885
ЛК-70/150-4		70	1675	1480	4520	885
ЛКК 70/150-III			1550	1328	4250	720
ЛКК 70/150-IV			1896	1664	5400	920
ЛК-120/150-2			1555	1330	3480	885
ЛК-120/150-3	150	120	1555	1330	4080	885
ЛК-120/150-4		120	1705	1480	4520	885
ЛКК 120/150-ІІІ			1620	1328	4250	720
ЛКК 120/150-IV			1970	1664	5400	920
ЛКК 160/150-ІІ			1595	1320	3820	720
ЛКК 160/150-ІІІ		160	1735	1450	4230	760
ЛКК 160/150-IV			2125	1840	5360	1070
ЛК-70/220-2			2143	1955	5200	960
ЛК-70/220-3			2048	1676	5770	920
ЛК-70/220-4		70	2308	1936	6580	1050
ЛКК 70/220-ІІ		70	2055	1842	5910	1070
ЛКК 70/220-III			2193	1976	6300	1100
ЛКК 70/220-IV			2687	2470	7900	1200
ЛК-120/220-3			2096	1755	5770	980
ЛК-120/220-4			2226	1854	6170	1050
ЛК-120/220-4	220	120	2097	1866	7100	950
ЛКК 120/220-ІІ		120	2120	1842	5910	1070
ЛКК 120/220-ІІІ			2270	1980	6300	1100
ЛКК 120/220-IV			2760	2470	7900	1200
ЛК-160/220-3			2117	1755	5770	980
ЛК-160/220-4			2118	1866	7100	950
ЛКК 160/220-ІІ		160	2140	1846	5300	1070
ЛКК 160/220-III			2470	2182	6300	1100
ЛКК 160/220-IV			3000	2714	7900	1400

⁴ Обозначения, принятые в табл. 5:

F — механическая разрушающая сила при растяжении, кH, не менее; H — строительная высота изолятора, мм; $H_{\rm H3}$ — длина изоляционной части изолятора, мм; $L_{\rm yr}$ — длина пути утечки изолятора, мм, не менее; $U_{50\%}$ — выдерживаемое напряжение грозовых импульсов, кB, не менее.

Таблица 5 — Характеристики полимерных линейных подвесных стержневых изоляторов 5 (продолжение)

Тип изолятора	U ном, кВ	<i>F</i> , кН	Н, мм	<i>Н</i> из, мм	$L_{ m yr}$, мм	<i>U</i> 50%, κΒ
ЛКК 70/330-III		70	2930	2695	7900	1410
ЛК-120/330-3			3136	2590	9000	1470
ЛК-120/330-4		120	3461	2884	10015	1540
ЛК-120/330-4		120	3657	3426	13150	1540
ЛКК 120/330-ІІІ			2965	2695	7900	1410
ЛК-160/330-3	330		3157	2590	9000	1470
ЛК-160/330-4	330	160	3482	2915	10015	1540
ЛКК 160/330-III			3000	2695	7900	1410
ЛК-210/330-3		210	3505	3231	10500	1540
ЛК-210/330-4		210	3536	3231	13500	1540
ЛК-300/330-3		300	3555	3231	10500	1540
ЛК-300/330-4		300	3586	3231	13500	1540
ЛКК 70/500-III		70	4125	3795	10520	1940
ЛК-120/500-4		120	4762	4531	17400	1740
ЛКК 120/500-III		120	4170	3815	10520	1940
ЛК-160/500-3			4457	3890	13150	1740
ЛК-160/500-4	500	160	4795	4531	17400	1740
ЛКК 160/500-III	300		4247	3855	10520	1940
ЛК-210/500-3		210	4836	4531	14700	1740
ЛК-210/500-4		210	4836	4531	18200	1740
ЛК-300/500-3	-	300	4886	4531	14700	1740
ЛК-300/500-4		300	4886	4531	18200	1740
ЛК-160/750-4		160	8162	7595	24700	2700
ЛК-210/750-4	750	210	6851	6546	27000	2700
ЛК-300/750-4		300	6901	6546	27000	2700

⁵ Обозначения, принятые в табл. 5:

F — механическая разрушающая сила при растяжении, кH, не менее; H — строительная высота изолятора, мм; $H_{\rm H3}$ — длина изоляционной части изолятора, мм; $L_{\rm yr}$ — длина пути утечки изолятора, мм, не менее; $U_{50\%}$ — выдерживаемое напряжение грозовых импульсов, кB, не менее.

Таблица 6 – Электрические характеристики ОПН

Тип ОПН	$U_{\scriptscriptstyle \mathrm{Hp}}, \kappa \mathrm{B}$	Остающиеся напряжения $U_{ m oct}$ [кВ] при максимальных значениях импульсных токов 8/20 мкс							
THII OIIII	о нр, кв	5 кА	10 кА	20 кА	40 кА				
ОПН-П-110/56/10/680	56	164	179	201	_				
ОПН-П-110/77/10/680	77	225	246	276	_				
ОПН-П-110/84/10/680	84	246	269	302	_				
ОПН-П-110/88/10/680	88	257	282	316	_				
ОПН-П-150/110/10/680	110	322	352	395	_				
ОПН-П-150/120/10/680	120	351	384	431	_				
ОПН-П-220/154/10/680	154	450	493	553	_				
ОПН-П-220/163/10/680	163	477	522	585	_				
ОПН-П-220/176/10/680	176	515	563	632	_				
ОПН-П-330/210/20/1450	210	_	609	671	739				
ОПН-П-330/230/10/1000	230	670	736	810	_				
ОПН-П-330/230/20/1450	230		667	735	809				
ОПН-П-500/303/20/1800	303	_	879	966	1080				
ОПН-П-500/318/20/1450	318		922	1020	1120				
ОПН-П-500/318/20/2100	318		922	999	1100				
ОПН-П-500/333/20/1450	333		966	1070	1170				
ОПН-П-750/455/20/2100	455		1320	1430	1560				
ОПН-П-750/465/20/2100	465		1350	1460	1610				
ОПН-П-750/475/20/2100	475	_	1380	1490	1640				

Таблица 7 — Поправочные коэффициенты K_n на число отходящих ВЛ

п вл	1	2	3	4
K_n	1,0	2,0	4,0	8,0